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We observed a gradual change in the structure of a shock wave passing through 
a long tube of bubbly liquid, which we attribute to the motion of the bubbles 
relative to the liquid. We show that the effect of the motion on the structure ofa 
shock wave is like that of thermal relaxation on gasdynamic shock waves: the 
pertinent relaxation time is the time viscous forces in the fluid take to alter the 
velocity of a bubble to that of the fluid. Our theory predicts certain changes 
in the speed of the shock wave and in its structure. We could not verify the 
prediction as to wave speed: in dilute mixtures it is too small to be measured. 
But we report experiments on the structure of the wave, which support our 
theoretical conclusion that the observed changes are due to the relative motion. 

1. Introduction 
This paper deals with shock waves in a mixture of a liquid and small gas 

bubbles. Campbell & Pitcher (1958), among the first to investigate this subject, 
derived Hugoniot relations, and experimentally verified the deduced relation 
between shock strength and velocity of propagation. Later theoretical work 
on shock waves of moderate amplitude (Crespo 1969; van Wijngaarden 1970) 
showed that they are governed by equations of the same type as those for long 
gravity waves on water of finite depth, which suggested that the pressure profile 
of a stationary wave looks like the surface elevation of an undular bore. The 
investigations of Noordzij (1973) and van Wijngaarden (19723) tended to 
confirm this. Their experiments were carried out in a shock tube about 1 m long. 
Subsequently we built a longer tube, and observed that the wave (which per- 
fectly resembled an undular bore in the first part of the tube) changed form in a 
way not to be explained by existing theory. (Schematic of tube, figure 1 ; descrip- 
tion of the apparatus, Q 6.) 

The profile of a pressure wave passing along the tube was recorded a t  three 
locations (A ,  B and C in figure 1). A is 0-BOm from the top, B at 2.5 m and C at 
4 m. We present these profiles and other experimental data in 3 6 .  In  figure 2 
(plate I ) ,  we show as an illustration the change in form of the profile of a wave 
with an initial pressure ratio 1.08, propagating through a mixture with a mean 

a-2 
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FIGURE 1. Apparatus for measuring shock waves. m, pressure transducer. 
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gas concentration by volume of 2.9 yo, the bubbles having an initial radius of 
1.1 mm. A t  A the present profile has the form typical of an undular bore: a steep 
rise in pressure a t  the front and waves at  the back. A t  B the steep rise at  the front 
is still there, but the pressure no longer rises to the equilibrium pressure at  the 
back. This takes place in a region, much thicker than the front shock, in which, 
slowly oscillating, the pressure reaches its final value. In  C the front shock and 
the oscillations disappear; the pressure profile is almost completely smooth; 
and i t  covers a region a t  least an order of magnitude greater than the thickness 
of the front shock in A. 

This change in profile cannot be explained by the theory of van Wijngaarden 
(1970)) which is based on the idea that there is a balance in the wave between the 
tendency to steepen (due to nonlinear effects) and to spread out (due to linear 
dispersion). The balance is realized in A (figure 2 ,  plate 1)) where the thickness 
and other typical properties of the wave agree very satisfactorily with the earlier 
theory. To find why the B and C profiles develop we took a close look at effects 
neglected in the earlier theory, and concluded that they stem from the motion 
of the bubbles relative to the liquid. After a typical time 7, initial relative motion 
(produced e.g. by a step wave) is resisted by a viscous force proportional to the 
relative velocity. Similar ‘rate ’ processes occur in gasdynamic shocks : their 
(‘relaxation’) effects on shocks are well understood in gasdynamics (Lighthill 
1956; Whitham 1959; Ockendon & Spence 1969). Of great importance in drawing 
the analogy with gasdynamics is how to describe the relative motion with suffi- 
cient accuracy. To solve this problem, we use the theory introduced by Levich 
(1962) for spherical bubbles, and extended by Moore (1965) for oblate ellipsoids. 
Sections 2-5 deal with the resulting theory of relaxation shocks in bubbly suspen- 
sions. 

2. Equations of motion 
We consider a time-dependent flow, in the x direction, of a dilute mixture of 

spherical gas bubbles with liquid. When there are n bubbles in a unit volume of 
the mixture, and locally these all have a radius R, the ratio between inter- 
bubble distance and bubble size is proportional to (n*R)-l. We deal with mixtures 
in which this ratio is large compared with unity, which means that the volume of 
gas in a unit volume of the mixture ,8 is small, since 

,8 = $rrnR3. (2.1) 

The mass densities of fluid and gas arepfandp,, respectively; that of the mixture 
is p. The contribution to p by pg can safely be neglected, so 

P = Pf(1 -P).  (2.2) 

Sometimes we shall use concentration by mass afpf (i.e. the volume of gas in a 
unit mass of the mixture) instead of p: 

a = PlCl -A* (2.3) 

u is the continuum liquid velocity (the average velocity over a volume element 
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which is small compared with the apparatus, yet contains many bubbles). The 
equation of mass conservation is 

a 
at ax 
%+- (pu) = 0. (2 .4 )  

Our definition of the liquid pressure p is analogous to our definition of u; the 
momentum equation is thus 

a a 
-ppu+-(p++pu2) = 0. 
at ax 

The velocity of a bubble is v. 
There are several reasons why the pressure of the gas in the bubbles pg 

may differ from p.  (i) The inertia of the liquid accelerated or decelerated with 
respect to the bubble-liquid interface, in the radial direction. This inertia causes 
dispersion of pressure waves. (ii) Further, surface tension may cause a differ- 
ence between the pressure inside a bubble and that outside. The coefficient of 
surface tension v is here of order the pressure p g  is atmospheric and the 
bubble radius is of order which makes v/R negligible. (iii) There are various 
damping mechanisms, the most important being heat conduction from the fluid 
into the gas, and vice versa. 

In  a universally valid expression for p - p g ,  these effects are represented by 
strongly nonlinear terms. But, for waves of moderate amplitude, we may restrict 
ourselves to an expressionforp -%valid for acoustic waves (see van Wijngaarden 
1968).  With Ro the undisturbed bubble radius, this relation is 

a 2  a 
'Q-' = - (R/Ro) + ~ w B  (R/Ro). p f ~ ;  at2 

In  (2 .6 )  the bubble resonance frequency 

"B = [3PO/(pfRg)lt, (2 .7)  

and 6 is the sum of the contributions a,, and a,, from viscous dissipation, heat 
conduction and acoustic radiation (due to the finite velocity of sound in the 
liquid c l ) ,  respectively. For a mixture in which the liquid has a kinematic vis- 
cosity v and the gas a ratio of specific heats y, 

6, = ~ V / ( W B R ~ ) ,  a,, = YOBR~/C~, 6th = 4.41 X 10-4(yWB/2n)& (2 .8 )  

(see e.g. van Wijngaarden 1972a) .  We neglect the small effect of relative trans- 
lational motion on the dispersion equation ( 2 . 6 ) .  When v - u  = 0, the mass of 
gas in a unit mass of the mixture is constant. Since pg N pg, this means that 

p g a  = const. =podo,  

where the subscript 0 refers to the undisturbed state. Together withp, R3 = poRi 
(the isothermal relation), and the expression for the speed of sound (see van 
Wijngaarden 1972a) 

(2 .9 )  
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this enables us to write (2.6) as 

(2.10) 

Incidentally, when inertial effects are negligible and we set S = &, (2.6) may be 
written as 

4p au 
P,-P = goax’ 

with p = pp v, indicating that viscous stresses associated with radial motion give 
the mixture an apparent bulk viscosity of 4p/(301) (Taylor 1954). Equation (2.7) 
supposes the gas to be isothermal. 

We shall consider both adiabatic and isothermal behaviour, though the liquid 
is assumed isothermal, because its heat capacity is very large compared with 
that of the gas. (For the present, we treat changes of volume of the bubbles as 
isothermal; in § 5 we give the pertinent adiabatic results.) For a bubble of volume 
V ,  p,V is constant during isothermal changes. Using (2.1) and the expression 
for the conservation of the number density n (breaking up or dissolution of 
bubbles is excluded) 

this gives 

an a 
at ax 
-+- ( n v )  = 0,  (2.11) 

(2.12) 

Our most important task is to give a sufficiently accurate description of the 
dynamics of the motion of the bubbles relative to the liquid. When surface-active 
agents are absent, and the Reynolds number 

Re = [2(v - u) R ] / v  (2.13) 

is large compared with unity, the flow around the bubble is very nearly potential, 
because there is no boundary layer for the velocity. A boundary layer does exist 
for the velocity gradient, just as a t  the free surface of gravity waves; but neglect 
of this is justified in a first approximation (see Levich 1962; Moore 1963, 1965). 
Dissipation takes place in the potential flow around the bubble; and it can be 
calculated from the potential. For a spherical bubble, Levich (1962) and Moore 
(1963) thus obtained the viscous drag 

D = I~V,UR(V - u). (2.14) 

This relation holds for both unsteady and steady flow, because it follows from 
potential flow, which is established instantaneously. For steady flow, Moore 
(1963) also calculated the effect of the boundary layer for the velocity gradient, 
and he obtained the drag coefficient 

c - _  I--  
- Re 48 ( &:) * (2.15) 

The second term on the right-hand side estimates the error involved in using 
(2.14) at finite Re. The Levich formula (2.14) presupposes a spherical bubble; 
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and in the shock waves we are concerned with, the bubbles may not be always 
spherical; so we have to take possible deformation into account. A measure for 
the deformation is the Weber number 

We = [ 2 p f ( u - v ) 2 R ] / c r  (2.16) 

(R  is the effective bubble radius, cr the coefficient of surface tension). 
For We < 1, (2.14) gives the drag on a bubble. The Weber numbers for which 

Moore (1965) calculated the drag are not small, yet they are of unit order (1-4, 
say). Moore calculated the drag as a function of We and the axis ratio x (of 
the major to the minor axis) of the oblate ellipsoid the bubbles deform to: 

We = 4 ~ - 4 ( ~ 3 + ~ - 2 ) { ~ 2 s e c - l ~ -  ( ~ 2 -  1 ) 4 } 2 ( ~ 2 - -  1)-3. (2.17) 

W e  is restricted to about 4, because Moore could find no equilibrium ellipsoid 
above that value. For given x, Moore calculated that the drag 

D = 1 2 i ~ ~ R ( v  -u) G ( x ) ,  (2.18) 
where 

(2.19) 

D = 1 when x = 1, and rises rather steeply with x. In  a number of our experiments 
W e  exceeded unity, making it necessary to use (2.18) (see $6).  Since the pheno- 
mena in shock waves are unsteady, finite R e  corrections like these in (2.15), or 
similar corrections for oblate ellipsoids (also in Moore 1965) cannot be applied. 
The equation of motion for a single bubble may now be written down. This must 
capture the fact that the rate of change of impulse (see Lamb 1932, $119) 
m(v - u)  equals the sum of the drag and the force - V ap p x  arising from the pres- 
sure gradient in the external flow. The virtual mass m is +pf V for a sphere, and 
increases with the axis ratio x for an oblate ellipsoid. The pertinent relation 
between x and m is given in Milne-Thomson (1968) in the following way. Write 
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G ( x )  = +(xz++x-2)[(x2- 1 ) * - ( 2 - ~ ~ ) s e c - ~ ~ ] [ W e ( ~ ~ -  1)%]-l. 

m = i p f  VO(x) .  (2.20) 

Hence (2.21) 

When R is understood as the effective bubble radius, the equation of motion 
becomes, with drag force and added mass in terms of (2.18) and (2.20), 

d aP 
ax 

{ i ~ r  VQ(V - u)} = - V -  - I~~T,uR(v - U )  G. (2.22) 

Using the definition of p, (2.1), and the conservation of bubbles, (2.11), this 
gives, at small values of p that permit the neglect of convective acceleration, 

For the moderate pressure changes we have in mind, a further approximation 
may be made by writing nR as nR31R& which results in 

(2.23) 
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Equation (2 .23)  will be used for the relative velocity v -u. It describes a relaxa- 
tion process with a relaxation time which can easily be determined for a spherical 
bubble for which both G and Q equal unity. Then we can define a relaxation time 

T’ = R$/(18v);  
and the relaxation equation is 

(2.24) 

(2.25) 

At times t such that t < T’, relative motion is not resisted by viscous friction, 
which becomes effective for times comparable with and larger than 7’. Provided 
the driving force aplax eventually tends to zero, ultimately relative motion 
vanishes. 

For deformed bubbles, no simple equation like (2 .25)  can be given for all times 
t. Section 4 deals with two typical situations. I n  the first, viscous friction is 
unimportant. Then, from (2 .23) ,  

(2.26) 

This is applicable in part A (figure 1) of the shock tube (see $3 3 and 4) .  Section 4 
also deals with relaxation zones of large width, in which x varies slowly. In this 
case we shall use a representative value x*, and define a representative relaxation 
time T by 

Q* G 
G, 18v’ 

with obvious notation. Then (2 .23)  reduces to 

7 = -- 

( : + T ~ ) { Q * / ~ ( V - U ) }  = ---. 2P aP 
Pf ax 

For convenience, we now list the equations to be used in $ 3 : 

P f  a = -  P = Pr (1 -P)  = Fa’ 1-p - P(1 +PL 

aP a a 
at ax at ax 

a a 

-+-(pa) = 0, @+-(p+pu2) = 0, 

(PJ) +ax ( P g m  = 0, 

, {~(v-u)Q}+-(v-u)C a 18v = --- 2P aP 
R; Pf ax’ 

(2 .27)  

(2.28) 

(2 .29) ,  (2 .30)  

(2.31), (2.32) 

(2.33) 

(2 .34)  

(2.35) 
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3. The effects of relative translational motion on wave propagation 
The general features of compressive waves through mixtures, governed by 

(2.29)-(2.35), are known for the case when there is no relative motion (review 
in van Wijngaarden 1 9 7 2 ~ ) .  For S = 0 and T = 0 (i.e. no dissipation or relative 
motion), with 

27 = (Pg-Po)lPo, 

waves of moderate amplitude are governed by 

ap ap ap I c; a3ji - at +co-+cog-+--- = 
ax ax 2w5ax3  0, 

an equation of the Korteweg-de Vries type, indicating the possible existence of 
cnoidal waves and bores. Solutions in the form of steady shock waves are 
obtained when dissipation is included; and (3.1) becomes 

ag a@ ,ap i c; a3g i s c 2 a 2 g  

ax ax 2 ~ : a x 3  2w,ax2 
0. - at +co-+cop-+-----2-  = 

Shock waves with pressure profiles required by solutions of (3.2) were obtained 
by experiment (van Wijngaarden 1972b; Noordzij 1973). 

The novel effect we investigate here is that of relative motion. From what is 
known in gasdynamics about the effect of ‘rate processes’ as described by (2.34) 
(Lighthill 1956; Whitham 1959; Ockendon & Spence 1969), much can be learned 
and directly used. Waves in dusty gases (where, in contrast to  the mixture 
considered here, the continuum phase is compressible and the dispersed incom- 
pressible) provide another possibility for comparison; and some aspects (as 
reviewed by Marble 1970) are of interest here. SO much of what follows can be 
anticipated from what is known in similar fields; but i t  is precisely the differences 
(such as the inertia associated with relative radial flow as described by (2.35), 
the specific form of (2.34)) that make analysis necessary for comparison with 
experiments (in $6). 

We first restrict ourselves to the effect of relative motion, and we consider 
small-amplitude waves in a mixture where p g  = p ,  For this it is sufficient to 
concern ourselves with spherical bubbles, in which case the relaxation time T‘ is 
given by (2.24). 

Straightforward linearization of (2.31)-(2.34) reveals the existence of two 
characteristic speeds, because the resulting equations yield 

The speed co has been defined before; the speed 

C f  = [ C t (  1 + 2/30)]+. (3.4) 

This was found by Crespo (1969), who considered the case T’ + co; it is the 
speed of sound in a mixture where the relative motion is not resisted by friction, 
In  this case the concentration of bubbles is locally less than i t  is when the bubbles 
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move with the fluid. This gives the mixture a greater stiffness, and consequently 
a sound velocity larger than co. The general features of solutions of (3.3) are well 
known: for times t < T’, the solutions represent waves propagating at  speed c f ;  
for times t T ‘ ,  the waves propagate at co, and the motion is governed by the 
terms preceded by T ’ - ~  in (3.3).  The higher-order terms have a diffusive effect 
on these waves. This follows, for example, by substituting in the equation valid 
for a wave which traveIs to the right, 

(3.5) 

- coalax for slat in the first and second term on the left-hand side, resulting in 

Wave-type solutions of (3.6) represent waves travelling a t  speed co and diffused 
by the action of the third term on the left-hand side. The diffusion coefficient is 
T’(c; - ci) .  In  waves of finite amplitude, diffusion may be resisted by nonlinear 
effects, comparable with the role of thermodynamic relaxation in gasdynamic 
waves (see e.g. Lighthill 1956; Whitham 1959; Ockendon & Spence 1969). 

To see how in our case relaxation, dissipation, dispersion and nonlinearity 
work together (or oppose each other), we write 

p = po( l  +ep’), p = po(l +@I), u = E C ~ U ’ ,  = ecOv‘, etc. 

The subscript 0 refers to the undisturbed state. This is introduced in (2.29)- 
(2.35). Terms of order e2 and lower are retained; terms of order e2p0 are discarded. 
We omit details, and merely state the result: omitting the primes, for a wave in 
positive x direction, 

Once (3.2), which does not take relaxation into account, and (3.5), which takes 
only this effect into account, are known, (3.7) is to be expected, because i t  is well 
known that, in an approximation one order beyond the linear, the various effects 
can simply be added in the resulting equation, provided the effects of dispersion, 
relaxation and dissipation are small. In  terms corresponding to these effects, 
as well as in nonlinear terms, it is immaterial whether c f  or co appears, because 
the difference between them is of order Po. To preserve symmetry, we have intro- 
duced c f  into these terms in the first line of (3.7), coin the second. Equation (3.7) 
is of the type discussed in Whitham (1959), in particular for an initial profile 
in the form of a Heaviside step function (as is the case in our shock tube experi- 
ments). For times t < 7’, the second line in (3.7) can be left out and the wave is 
governed by (3.2), but with cf in place of co. Since T‘ is of order s and cf of 
order 102ms-1, the relaxation process becomes effective after the wave has 
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travelled several metres. Numerical computations on (3.2) showed that the solu- 
tion does not change appreciably after travelling a couple of centimetres. We 
may therefore assume that the wave form, as observed in section A of the shock 
tube in figure 1, represents the steady solution of (3.2) (with cf instead of co) .  

After the wave has propagated over a distance of order cf T’, the relaxation 
mechanism becomes important. Its effect on the wave is, as we have seen, dif- 
fusive. In  an acoustic wave, this diffusion is not resisted, and the wave ultimately 
diffuses out. In  a nonlinear wave, however, the diffusion is resisted by nonlinear 
steepening, and a steady profile is possible in which these mechanisms exactly 
balance. This can only occur when the strength of the shock is less than a certain 
critical value, which can be calculated with help of Lighthill (1 956). The argu- 
ment is this. The wave travels steadily at  a speed U which is, for our waves (see 
e.g. van Wijngaarden 1970) related to co by U/co = (pl/po)*, where pl is the pres- 
sure behind the wave. On the other hand, if the profile is smooth, the wavelets 
a t  the front travel with speed at  most cf, related to co by cf = co( 1 +Po) (cf. (3.4)). 
Since the wave is steady, the speed of the front equals U ,  whence 

PllPO 1 + 2Po. (3.8) 
To this class of profiles belongs that observed in section C of the shock tube, 
and shown in figure 2 (plate 1). The thickness d, of these waves can be estimated 
using c,fj(afj/ax) and the diffusion term T ’ ( c ; - c ~ )  (82fj/ax2) in (3.6), which must 
be of equal magnitude in these waves. It follows that 

7’co(c;/c; - 1) . 
P1IPo- 1 ’ 

a, N (3.9) 

(3.8) indicates that this is of the order of one metre. In  A the nonlinear term 
must balance with the dispersion term; so 

(3.10) 

which amounts to a few centimetres for not too weak shocks (see Noordzij 1973). 
When pl/po exceeds 1 +2P0, no completely smooth profile is possible; and 
Whitham (1959) shows that the wave resisted by diffusion is preceded by a thin 
shock of the same sort as the front in A .  The strength p*/po of this shock can be 
calculated (as in 94) from Hugoniot relations. This is the type of wave (in B in 
figure 2) where a thin region (of order of magnitude given by (3.10)) is followed 
by a much thicker region (with thickness as in (3.9)). 

The discussion of $3 serves to explain the occurrence of different types of 
shock profiles as the shock travels down the tube. These profiles are all steady 
in an appropriate sense. In  $ 4  we shall deal with the profiles in more detail 
to obtain results on shock speed, thickness and other characteristic properties 
that may be compared with measurement. 

4. Structure of steady shock waves 
We consider a shock wave moving with constant speed U in the negative x 

direction. Equations (2.31)-(2.35) are written in the independent variables x 
and t. We transform these into x’, t ,  where x‘ = x+ Ut. In  this new frame, the 
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shock wave is steady, and (all%),, therefure zero. Carrying out this transforma- 
tion on (2.31), we obtain, after integration, the upstream conditions indicated 
with subscript 0: 

PAJ-P)(U+u)  = P r ( I - P o )  u. (4.1) 

(4.2) 

PO =P+Pf(l-Pn) UU. (4.3) 

The shock-induced velocity is, as follows from (2.30) and (4.1), 

u = po U(a/ao- 1). 

Likewise, the momentum equation becomes 

Substitution of (4.2) into (4.3) gives, with help of (2.30) and the expression (2.9) 
for the sound speed co, 

The analysis is, from here on, different for the various types of steady shocks we 
associated with parts A,  B and C respectively in the shock tube of figure 1. We 
call these three types for convenience A, B and C shocks. 

A shocks 

Here relative motion is not yet resisted by friction, and we can use (2.26) for the 
relative acceleration. Expressing p in terms of a with (4.4) and replacing a/at by 
U dldx, we find upon integration, omitting terms of order as, 

aQ(v-u)/U = a"@. (4.5) 

It is assumed that v = u = 0 ahead of the shock (i.e. we neglect the relative 
velocity caused by buoyancy). This is small in our experiments compared with 
the shock-induced velocity; and it is of opposite sign, because the shocks travel 
in a direction opposite to gravity. In  a frame moving with the shock, (2.33) 
becomes 

% =  POU 
Pn P(v-u)+P(u+U) '  

With the help of (2.30), (4.2) and (4.5), this is, in terms of a, 

5 = 
Pn O1 

{ 1 - (&a)-' (a2 - a:)}. 

Together, with (4.4), this leads to 

At the back of the shock, x -+ co; where pertinent quantities are indicated with 
the subscript 1, pg = p = pl; whence, from (4.7), 

(ao - a,) (ao - U2a / c2 )  an 
1 O - -  (a;---;) = 0. 

a1 an Qi 



126 

Further we have, from (4.4), 
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(4.9) 

Eliminating aJa0 using these expressions and neglecting terms of order a:, we 
obtain, with (3.4), 

(4.10) 

For given pressure ratiopl/po and given a, (4.10) specifies the speed of propagation 
of A shocks. To describe the structure, we express the left-hand side of (4.7) in 
terms of a by means of (2.35). We introduce 

y = a/ao, .Mi = U~/C:, = x/R0(3ao)3. (4.11)-(4.13) 

From (4.8) and (4.9) it  follows that, in terms of y, the pressure ratio is 

Substituting this into (4.10) gives to order at 

(4.14) 

Using (4.11)-(4.14), we find, upon inserting (4.7) into the left-hand side of (2.35) 
and doing some algebra,? 

where 

(4.15) 

With R, - 10-3m, U N 102ms-l, 6 - 10-2 and oB+ 104s-l, 6" is of order 10-2 
and hence a small parameter, representing the effect of the kind of dissipation 
involved in (2.35). The constant C in (4.15) is of order ao: 

C = ao/Qi. 

Equation (4.15) differs only slightly from 

(4.16) 

(4.17) 

derived by van Wijngaarden (1970) for shocks without relative translational 
motion, and discussed in more detail by Noordzij (1973). The factor (y+C')/y 
in (4.15) does not make much difference in the region of interest, y1 6 y < 1, 
so the features of the solution of (4.15) are the same as those of (4.17): a sharp 
decrease of y from 1 to yl, followed by damped oscillations around y = yl. There- 
fore we shall need only (4.10) in comparing experiment with theory. 

t To avoid an unnecessarily complicated expression, we took Q = Q1 in deriving (4.15). 
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C shocks 
Whereas in A shocks friction plays no role, C shocks are formed by a balance 
between nonlinear steepening and relaxation. This occurs (see (3.8)) only for 
pressure ratios slightly larger than unity. In  these weak waves, the bubbles 
suffer no appreciable deformation, and we may put both Q and G in (2.34) equal 
to unity, corresponding to spherical bubbles. Starting from (2.25), the procedure 
described above for the A shocks leads here to 

(4.18) 

where 7’ is given by (2.24). Equation (4.18) neatly describes the memory effect 
in the relation between p g  and a as produced by viscous friction. Combination of 
(4.4) and (4.18) gives 

pg-p - 
Po 

For x -+ 00, p ,  = p = p,, and v - u vanishes owing to viscous friction. Then (4.9) 

(4.20) and (4.19) give simply u2/c; = Pl/PO> 

an expression found by Campbell & Pitcher (1958), who were concerned with 
shock waves in which v = u everywhere (i.e. 7‘ = 0). Inserting (4.19) in (2.35), 
and using, apart from (4.11)-(4.13), the parameter 

E = RO/[U7’(3a0)q, 
we finallv obtain 

(4.21) 

(4.22) 

The parameter e in the integral term is zero in the case of no relative motion, 
and infinite in the case of zero viscosity. In  the experiments of $6, E is of order 
10-2. For the purpose of finding the structure of waves in which nonlinear steepen- 
ing is everywhere balanced by relaxation, we stretch the 7 scale to 

g- = €7. (4.23) 
Inserting this into (4.22), 

( 1 - y ) ( M c 2 - y ) - a  ( M 2  -l 5 7exp dy2 - ( f - f ‘ ) d f ’ =  E ~ - + + * E -  d2Y dY (4.24) O O )  at2 
For E -+ 0, the right-hand side vanishes, and the equation describes a transition 
in which nonlinear steepening is everywhere resisted by relaxation. In  $ 3  we 
found that such a transition is possible only if 

(4.25) 

Since y lies between unity and Mo2,  ( 1 - y) and ( M;2 - y) are of order a, in these 
waves; and, to order a& we may simplify (4.24) to 

1 M2 - 
0 - PJPO 1 + 2ao. 
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y = ${(l+M<2)+$(1-M&2)}, h = 2 d o / ( f M $ -  l), (4.27), (4.28) 

and require that $ = 0 (half way between y = 1 and y = Mo2)  at = 0, 

(1 - ?+k)l-A (1 + $ ) l + A  = exp{-C). (4.29) 

For ( 1  - A) < 0,  which amounts to (4.25) (from (4.28)), this represents a wave 
profile in which ?+k decreases smoothly from 1 to - 1, y consequently from 1 to 
M i 2 .  From (4.4) and (4.27) the dimensionless pressure p/po is related to $ by 

PIP0 = H<l+ Hf) + $(I- M31. (4.30) 

The dimensionless pressure rises from 1 to a( 1 + M i )  over a distance which is, in 
terms of 6, a few times ( 2 ,  say) h - 1. Using (4.28) and remembering that 201, can 
be written as (cf. (3.4)) c;/cf- 1, this is equal to 2(c;- U2) / (U2-c f ) .  The rise of 
$(1 + M i )  to Mf takes place over a distance 2 ( A +  1)  or 2(c;+ U2-2c$)/(U2-c;) .  
The overall thickness d,, say, in terms of the physical distance 2776, is therefore 

(4.31) 

in agreement with the estimate (3.9) of 5 3. The number 4 means that arepresenta- 
tive thickness d, is chosen over which the pressure difference p -po is 90 % of 
p1 -po. Greater accuracy cannot be achieved in experiments. 

B shocks 

In  these shocks relaxation is effective, but not over the whole profile. The pressure 
ratio is above 1 + 2a,, so that a smooth profile, with diffusion due to relaxation 
everywhere in balance with compressive steepening, is impossible. What happens 
is that, on the 6 scale (here based on a representative r rather than the r' for spheri- 
cal bubbles), a discontinuity forms a t  the front of the wave. This discontinuity 
is a shock wave of the A type. In  front the pressure isPo, at the backp", say. There 
a region, where compressive steepening is balanced by dispersion (the front shock), 
is succeeded by one where it is balanced by relaxation. In  the transition region, the 
three mechanisms are comparable in importance. A theoretical estimate for p* 
can be made in various ways, one of which is as follows. In the front shock, 
relaxation is unimportant and its propagation velocity must obey, from (4. lo), 

u" = !c [ 1 -ao ( 2 -  Q;1(1 +$))I. 
c; Po 

The pressure ratio pl/po follows from conservation of mass and momentum of 
the whole wave; and just as for the C shocks, it  is given by (4.20), resulting, with 
the aid of (3.4), in 

Po Po 
(4.32) 

The pressure recordings (discussed in Q 6) give p -po relative to the pressure jump 
pl -po. From (4.32), the theoretical expression for this quantity is 

(4.33) 
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It is easily verified that, for spherical bubbles (Q = I), p* becomes equal to p o  
to order a; when pl/po = 1 + 2a0, which is the threshold for the existence of C 
waves. For slightly deformed bubbles, we first estimate the axis ratio x, and 
subsequently determine We for this estimate (with help of Moore 1965). Sub- 
stitution into (4.5) gives the relative velocity u - u  used to calculate We. I n  
general this is different from the assumed We. The procedure starts again with 
a new We. I n  this way, the value of Q* can be found after a few iterations. 

The y* value of y ,  associated with p* is 

Y* = Y1+a,O,l(l+Yl), (4.34) 

from (4.4),  (4.20) and (4.26). I n  the region y* < y 6 1, relative motion is not re- 
sisted by viscous friction; and the analysis carried out for the A shocks leads to 
the analogous result 

(4.35) 

The equilibrium points are y = 1 and y = y*. Equation (4.35) is of the same type 
as (4.15) for the A shock. More interesting is the remainder of the wave, which is 
governed by the balance between nonlinear steepening and diffusion by relaxa- 
tion. For spherical bubbles, the analysis of this would be as for the C shocks, 
but it is anticipated that for the pressure ratios involved here the bubbles are 
deformed; so it is hard to obtain an exact description. For a theoretical estimate 
of the width of this part of the wave, we represent the continuously varying form 
by a representative constant form over the whole relaxation zone. For this, 
we take the equilibrium form of the bubble a t  p = p*, for which Q* is obtained 
as described above. Associated with this form is an axis ratio x*, for which the 
drag can be calculated from (2.18). This procedure will overestimate the effect 
of deformation, because the chosen constant form represents the largest deforma- 
tion. Eventually, a t  the tail of the wave where u - u vanishes, the bubbles are 
spherical again. For the bubble form a t  p = p*, the quantity G,(x)/Q*(x), sub- 
stituted into (2.27), gives us a representative relaxation time 7.  

With E and (as  defined in (4.21) and (4.23), we find for E 3 0 (in the same way 
as (4.24) is obtained for C shocks) 

5 dy2 
-a3 at' ( 1 - y) (Mcz  - y )  - 2 (yM;)-l/ - exp - (( - c)  at' = 0. (4.36) 

The front shock is, on the ( scale, a discontinuity. We take 6 = 0 there, and write 
in the relaxation zone ( 2 0 

Y = 1 + { ( Y l -  1) +f(t)V(t)> (4.37) 

where I ( ( )  is Heaviside's unit step function. With a view to (4.34) the function f 
is of order ao. We insert (4.37) into (4.36) and neglect terms of order at. Then the 
integral term yields (ao/&*) (y! - 1) exp { - 61, and 

f = Iao/Q*}(l+yi)exP{-6}. 

Together with (4.37)) for 6 2 0, this gives 

(4.38) 
F L M  66 
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I 
r 

FIGURE 3. Profile of the shock waves in region B, in terms of y as a function of 9. Important 
quantities, such as dA, wavelength A, y* and ds, are indicated. 

At the discontinuity $ = 0, this gives 

Y' = ~ 1 +  aoQ;Yl+ ~i), 

which supports the independently obtained estimate (4.34). Since ycl equals 
M$ or (from (4.20)) pl/po, with (4.4) we may also write (4.38) in the form 

(4.39) 

The thickness of the relaxation zone in B shock waves (aB, say), is therefore a 
few times UT, 

dB N UT. (4.40) 

The various quantities of interest for B shocks are shown in figure 3. 

5. Summary of results for isothermal and adiabatic bubbles: effect of 
thermal relaxation 

When D is the diffusivity of heat in air, (Dt)s measures how deep heat penetrates 
into a bubble by conduction. The relaxation time we found is 7, which is of order 
10-2s. With D = 18 x 10-6m2s-1, ( D T ) ~  is about 4 x 10-4 m for this value of 7, 
which is appreciably smaller than the bubble radii occurring in the experiments 
( N 1 mm). In  other words, the thermal relaxation time is longer than the viscous 
relaxation time T. Thermally the processes are therefore most likely to occur 
adiabatically. In  that case, p g  N pQ' (where y = 1.4 is the ratio between specific 
heats of the gas in the bubbles, in our case air). All the calculations can be carried 
out with this relation as well. Because the isothermal formulae are less compli- 
cated, we developed the theory of Ss2-4 for isothermal bubbles. We now sum- 
marize these results, and give the corresponding expressionsfor adiabaticbubbles. 
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(1 +ao&cl ( 1  + (p,,/pl)l/Y} (adiabatic). (5.2) 

The speed of the shock wave, in which the bubbles eventually move with the fluid, 
is 

(pl/po (isothermal), (5.3) 

(5.4) 

B shocks 

1-aoQ~ pllpo + ' (isothermal) , (5.5) PlIPO - 1 

(adiabatic). (5.6) 
PlIPO - 1 1 + (PO/Pl)l/Y 

Y - JmPolPl)(y+l)/y 1 - Y"0 Qycl 
p*/po-l = 

F =  

d, N Ur.  (5.7) 

C shocks 
C shocks occur when 

1 + 2cx0 (isothermal), 

1 + 4ya0/(y + 1) (adiabatic). 
PlIPO { 

The profile is given by 

where 

and 

(1  - ( 1  + = exp { - x/( Ur')}, 
2- 1) (isothermal), 

2a0y/(M:-y) (adiabatic). 

The thickness is d, 2: hUr' 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

From the estimate of the thermal penetration depth made a t  the beginning of 
this section, i t  follows that the thermal relaxation time is longer, but not an order 
of magnitude so, than the viscous relaxation time. This means that in some of 
the B and C shocks, thermal relaxation may be effective. To distinguish between 
thermal and viscous relaxation, it is useful to consider how thermal relaxation 
works out. Without a complete theory a t  hand, it is clear that the two velocities 
of sound occurring in a thermal relaxation theory are the isothermal sound speed 
co and the adiabatic sound speed Y ~ c , .  

By analogy with our relaxation theory it appears that smooth profiles occur 
below a pressure ratio equal to the ratio of the squares of these sound speeds, or 
in the case of air bubbles, 

PJPo 6 Y = 1.4. (5.15) 
9-2 
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This was noticed by Crespo (1969). With viscous relaxation smooth profiles are 
predicted for pressure ratios as given by (3.8). To make our discussion of the 
experiments easier, we now give an estimate for the value of p,,*d associated with 
a thermal relaxation pressure profile. The front part must obey (5.4) : 

- -  u2 - P2lPO - 1 
c; 1 - (Polpad) * ur ’ 

For the whole wave we have 

whence 

The F valid for a thermal B shock is therefore 

(5.16) 

(5.17) 

It is easily verified that pza is p o  for pl /po  = y 

6. Experiments compared with theory 
The experiments were carried out in a vertically mounted cylindrical tube 

with inner diameter of 5.5 x (shown schematically in figure 1). I n  this Per- 
spex tube, shock waves were generated as described in Noordzij (1973) and van 
Wijngaarden (1972b). The tube was almost completely filled with an aqueous 
solution of glycerine. The density of the resulting liquid was 1.17 x 103kgm-3, 
the viscosity v = 7 x 10-6m2s-1, the surface tension CT = 7 x 10-2Nm-l. By 
evacuating the air-occupied region, the pressure in the mixture was decreased 
below atmospheric pressure. Bubbles were supplied through a system of many 
capillary tubes a t  the bottom of the tube. I n  the undisturbed state, these bubbles 
are locally almost all of the same size. The glycerine was added to keep buoyancy 
effects as small as possible. When the mixture was a t  rest a t  this low pressure, 
the mean volumetric gas content was determined. The local value of the gas 
fraction in each experiment follows from this mean value, together with the 
known isothermal distribution of gas fraction in the undisturbed state. A photo- 
graph of the mixture was made, by means of which the bubble size Ro was 
determined. After this a step wave was generated at the upper boundary of the 
mixture by puncturing the seal on the top of the tube, thereby admitting atmo- 
spheric pressure in the air region a t  the top. The profile of the pressure wave 
passing along the tube was recorded a t  A,  B and C (figure I), where the distances 
between the different locations are also given. The wave propagation velocity was 
also detected a t  these locations. A record of the profiles was discussed qualita- 
tively (332-5). I n  this section we make a quantitative comparison with theory. 

A shocks 

A record for this region is shown in figure 4 (plate 2 )  : a steep increase in pressure 
at the front part of the shock and attenuated waves a t  the back. This, as well as 
other pressure records to be shown, represents the pressure as a function of time, 
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Uz/ci (theory) 

FIGURE 5. Theoretical and experimental values of Uz/ci in region A. Experiment: 0, iso- 
thermal, resisted, (5.3); n, isothermal, not resisted, (5.1); A, adiabatic, resisted, (5.4); 
x , diabatic, not resisted, (5.2). -, theory. 

a t  a given location. Comparison with theory, where the pressure is given in 
terms of the space variable x, is possible by the transformation t = x /U ,  where 
U is for each record the pertinent propagation velocity. From the record in 
figure 4 (plate 2 ) )  shock thickness, wavelength, attenuation of the waves, and 
the shock strength are determined. These quantities were discussed in Noordzij 
(1973) and van Wijngaarden (1972 b ) ,  where good agreement with theory was 
found. In  this paper, therefore, we do not pay much attention to these quantities, 
and we consider mainly relaxation effects. For this reason, it is of interest to 
decide with which relation for U21cg the experiments agree. For this purpose, we 
collected the different theoretical and experimental values for Ua/ct in figure 5. 
The value for c,  is given by (2.9). It is the velocity with which waves of infinite 
wavelength propagate through the mixture. For each experiment, the measured 
value of Us, divided by c:, is found to be ( Uz/c&.xp along the vertical axis. The 
four different theoretical values for the quantity Uz/ct [(5.1)-(5.4)], a t  given 
p J p ,  and a,, are registered along the horizontal axis. When either the isothermal 
(resisted, not resisted) or adiabatic (resisted, not resisted) theory fits the experi- 
ments, the marks representing the pertinent theory are close to the solid line. 
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3.5 t 0 / O  

0 
A 

A 

A 

Uz/ci (theory) 

FIGURE 7. Theoretical and experimental values of Uz/ci in region B. Experiment: 
0, isothermal, resisted, (5.3); A, adiabatic, resisted, (5.4). ---, theory. 

The conclusion we draw from figure 5 is that the adiabatic marks are definitely 
closer to the solid line than the isothermal. The difference between the values for 
P / c t  of waves resisted by friction, and waves not so resisted, is (see figure 5) 
of the order of magnitude of the scatter; so in this respect the experiments provide 
no verification. 

B shocks 

The structure of the shock is considerably modified by relaxation, as shown in 
figure 6 (plate 3). Again there is a steep increase a t  the front part; but now i t  is 
followed by a smooth rise of the pressure, together with small amplitude oscilla- 
tions, up to the equilibrium pressure. From this record shock thickness, wave- 
length, typical length for the smooth profile, p* and the shock strength are 
determined. For B shocks, we are again interested in which relation for U2/c; 
agrees with the experiments. For this purpose, we collect in figure 7 the 
different theoretical and experimental values for U z / c ~ ,  in analogy to figure 5 .  

But, in contrast to figure 5, we present here only two of the four values for 
UZ/c$ (from the discussion of figure 5 about scatter). Because of this, in figure 7 
we cease to distinguish between resisted and not resisted. On the other hand, 
from the discussion in $ 3  about region B, when x/crr exceeds unity, the theory 
in which nonlinear steepening is resisted by relaxation can be expected to hold. 
For these reasons, we register in figure 7 the isothermal (resisted) and adiabatic 
(resisted) values for P / c &  according to (5.3) and (5.4), respectively. When either 
the isothermal or adiabatic theory fits the experiments, the marks representing 
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0 0.5 1.0 

F (theory) 

FIGURE 8. Theoretical and experimental values of F = (p /p$  - l)/(pl/po- 1):  
-, theory, (5.6); 0, experiment. 

the pertinent theory are close to the solid line. However, from figure 7 no clear 
conclusion can be reached as to which theory applies (but see the remarks on 
thermal relaxation, below). To compare the theoretical and experimental results 
forp* and d,, we make an estimate for the deformation expressed by x. In  $4 we 
took as representative the value x* a t  p = p* .  For given a0, pl/po, x* and F, the 
relative velocity w - u is, from (4.4) and ( 5 . 5 ) ,  

We could as well use here the corresponding adiabatic relation. The relation (6. 1),  
together with (2.16), (2.17), (2.21) and the experimental values for U ,  ao, pl/po 
and F, enable one to calculate the relative velocity a t p  = p* and the correspond- 
ing values for We*, Re" and x*. The experimental data and these quantities are 
collected in table 1. It turns out that We* is less than 4 in 26 out of 35 experiments, 
and less than 1-7 in 19 of these. We may therefore conclude that the theory of 
$92-5, which excludes Weber numbers greater than 3-75, is applicable. We 
start by considering the quantity F, as defined by (5.6), which determines the 
situation ofp*. The theoretical values Fth and the experimental values are given 
in table 1; and those for which We* < 3-75 appear in figure 8. This figure shows 
that the theoretical values for F are systematically above the corresponding 
experimental ones. 

To illustrate this in another way, we plot the experimental values for given a0 
as a function of p,/po in figure 9. The theoretical curve is for (5.6) and Q = 1.  
At low pressure ratios, the deformation of the bubbles is small, whereas for 
pl/po above 1-8 the theoretical values of F are already near unity, and not very 
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1.0 

P 

0.5 ! b  0 / 

I .5 2.0 2.5 

P11PO 

FIGURE 9. F ,  (5.6), as a function of pl/po, with a. a parameter. a. = 0-87 x lo-*: - - - -, 
theory; 0, experiment. a = 3.1 x lo-': -.-.- , theory; W, experiment. -, (p,*,/po- I)/ 
( p l / p 0 -  1) from thermal relaxation, (5.17). 

sensitive to variations in either a, or Q .  The curve for Q = 1 is therefore sufficient 
to compare theory with experiment. I n  figure 9 we also draw the curve for thermal 
relaxation, according to  (5.16) and (5.17). It is evident that the experimental 
data are closer to the line for viscous than to that for thermal relaxation. For large 
pressure ratios, this is less clear, because the theoretical curves tend to run close 
to each other. Figure 9 illustrates that, for B shocks, thermal relaxation is notice- 
able, shown by the deviation of the experimental data from the theoretical line 
based upon relaxation due to viscous friction. 

Another quantity of interest is the length d,. The theoretical value is of order 
Ur,  r being given by (2.27). The values for Q* and G, can be obtained for each x* 
from (2.21) and (2.f 9). Although G rises rather sharply with x, so does Q with the 
interesting result that  their ratio differs less than 5 yo from 1 for x < 1-7 and less 
than 10 % for x < 2. Because for the bulk of the experiments of table 1 x* < 1.7, 
one may set Q*ic/G, = 1 in (2.27) when comparing theoretical with the experimen- 
tal values of dB. We define d, as the distance over which ppl - p  rises from p l  -p* 
to  10 % of p l - p o ,  in analogy with the definition of d, (4.25). It follows from 
(4.39) then that 

The experimental values of the left-hand side of (6.2), which we call K ,  are given 
in table 1. The mean value of K for those experiments for which x* < 1-7 is 
K = 0.68. I n  figure I0 the distribution function for K is given. The standard 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
1 4 
15 
16 
17 
18 
19 
20 
21 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

99 
I I  

P h "  
1.07 
1.07 
1.08 
1.11 
1.12 
1.12 
1.14 
1.14 
1.15 
1.15 
1.18 
1.19 
1.21 
1.23 
1.27 
1.28 
1.29 
1.41 
1.42 
1.42 
1-6 
1.61 
1.61 
1.96 
1.97 
1.99 
2.51 
2.54 
2.56 
2.91 
3.00 
3.04 
3.83 
3.87 
3.96 

B o  ( % )  
1.22 
2.94 
0.97 
1.43 
1.72 
3.41 
1.47 
2.43 
2.71 
4.68 
1.12 
1.58 
0.69 
0.81 
3.52 
2.29 
0.81 
0.87 
2.19 
3.03 
0.88 
1.90 
2.76 
2.19 
2.86 
1.12 
1-43 
2.39 
3.49 
1.72 
3.64 
2.77 
1.98 
2.77 
2.94 

Ro 
(mm) 
1.03 
1.18 
0.94 
1.05 
1.09 
1.21 
1.01 
1.10 
1.15 
1.21 
1.00 
1.31 
0.91 
0.95 
1.19 
1.22 
1.09 
1.19 
1.28 
1.45 
1-03 
1.25 
1.35 
1.36 
1.48 
1.08 
1.11 
1.29 
1.39 
1.19 
1.54 
1.24 
1.1 
1.36 
1-4 

Ueap 

(Ins-l) 

156 
70 

143 
115 
90 
66 

119 
94 
79 
55 

111 
85 

167 
119 
69 
85 

139 
I f t i  
85 
69 

143 
122 
ss 

100 
79 

128 
93 
79 
58 
83 
58 
70 
73 
67 
59 

F , X P  

0.27 
0.40 
0.3 1 
0.G0 
0.40 
0.38 
0.33 
0-41 
0.46 
0.33 
0.45 
0.72 
tl.4ti 
0.64 
0.30 
0.38 
0.4(i 
0.70 
0.57 
0.52 
0.57 
0.57 
0.5G 
0.69 
0.55 
0.50 
0.74 
0-82 
0.76 
0.76 
0.79 
0.79 
0.78 
0.81 
0.81 

P t h  

0.62 
0.09 
0.72 
0.70 
0.456 
0.38 
0.77 
0.61 
0.65 
0.39 
0.86 
0.89 
0.92 
0.93 
0.78 
0.85 
0.94 
U.97 
0.94 
0.93 
0.97 
0.97 
0.96 
0.98 

0.99 
0.99 

- 

- 

- 

- 
- 

- 
- 

- 
- 

2'-U 

(ms-l) 

0.08 
0.12 
0.06 
0.17 
0.14 
0.17 
0.17 
0.16 
0.20 
0.19 
0.17 
0.23 
0.18 
0.42 
0.23 
0.22 
0-20 
0.24 
0.27 
0.26 
0.28 
0.29 
0.29 
0.32 

0.30 
0.30 

- 

- 

- 

- 
__ 
- 

- 
- 

- 

We 

0.25 
0.60 
0.1 1 
1 .00 
0.60 
1.00 
0.60 
1-00 
1.50 
1.50 
1.00 
9.35 

1.00 
1.50 
2.00 
2.00 
1.50 
2.35 
3.10 
3.20 
2.00 
3.50 
3.55 
3.75 

3.20 
3.73 

- 

-. 

- 
- 

- 

- 

- 

- 

__ 

TABLE 1. Summary of experiment.s in region B 

Re 

25 
42 
16 
51 
44 
59 
50 
50 
70 
66 
49 
87 
47 
59 
76 
77 
64 
83 
99 

107 
76 

105 
110 
116 

92 
98 

- 

- 

- 

- 
- 

- 
- 

- 
- 

X 
1.05 
1.10 
1.00 
1.20 
1.10 
1.20 
1.20 
1-20 
1.30 
1.30 
1.20 
1.70 
1.20 
1.30 
1.50 
1.50 
1.30 
1.70 
2.40 
2.50 
1.50 
3.20 
3.30 
4.00 
> 4  
2.50 
4.00 
> 4  
> 4  
> 4  
> 4  
> 4  
> 4  
> 4  
> 4  

K 

0.69 
0.36 
0.86 
0.90 
0.61 
0.41 
0.83 
0.86 
0.48 
0.46 
0.96 
0.87 
0.93 
1.30 
0.56 
0.40 
0.52 
0.4 1 
0.38 
0.23 
0.47 
0-38 
0-37 
0.48 
0.29 
0 56 
0.41 
0.41 
0.29 
0.22 
0-15 
0.29 
0.34 
0.42 
0.40 

deviation is 0.25. This is of the same order of magnitude as the relative errors 
involved in the measurements. It therefore appears that the relaxation time 
deduced from the experiments is smaller than that predicted by theory. 

C shocks 

Finally, we consider C shocks, in which the profile is smooth and follows from a 
balance of nonlinear steepening and relaxation. A typical record for the pressure 
as a function of time is shown in figure 11 (thick line), where the theoretical rela- 
tion (thin line) for the adiabatic case is also given. This theoretical curve is 
formed from (5.10), (5.11) and (5.13), using the transformation t = x / U .  C shock 
waves occur according to the adiabatic theory for pressure ratios given by 
(5.9), and according to the isothermal theory given by (5.8). If we compare both 
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0-3 0.4 0.5 0.6 

Mean value 

n-4 Standard deviation 

K 

FIGURE 10. Distribution function of K .  Mean value is 0.68, standard deviation 0.25. 
Experiments in which x* < 1.7. 

limiting values with the experimental values for pJp,, in table 2 ,  for which we 
observed smooth profiles, it follows that the appearance of smooth profiles 
answers to the adiabatic relation. For that reason, in figure 11 the adiabatic re- 
presentation is compared with the experimental curve. The figure shows that 
the theoretical pressure changes over a distance appreciably longer than the ex- 
perimental one. However, by changing the timewise variable in the theoretical 
pressure profile, this curve appears to fit the experimental curve, though with a 
different relaxation time 7’. Actually, the fit is best with a relaxation time about 
one half of the theoretical value Rg/l8v. The measured pressure profile therefore 
has the shape predicted, but a smaller relaxation time; this we also found for B 
shocks (see $7) .  In  table 2 the value for the shock thickness d, following from 
(5.14) is given for different experiments. The propagation velocity is not shown in 
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FIGURE 11. m, (p/po-i)/(plpo-l) as a function of t in region C: p / p o  = 1.08; 
Po = 3.7 x m; d, = 2.04 m; 1 + 4ya,/(y+ 1)  = 1.085. - , adia- 
batic theory (5.9), (5.11), T = s, using transformation x /U = t ;  0, theoretical values 
of pressure if 7’ is one half of the theoretical value Ri/18v. 

Ro = 1.17 x 

Pl 
PO 
- P O  

(%) 
4yB0 1 +- 
Y + l  

1.06 2.58 1.052 1.061 1-13 1.09 
1.06 3.77 1.075 1.088 1.19 0.81 
1.08 2.32 1.046 1.054 1-16 1.30 
1.08 3.67 1.073 1.085 1.17 1-30 
1.13 4.07 1.081 1-094 1-15 1.64 

TABLE 2. Summary of experiments in region C 

2 4 6 8 1 0  
10-3 s 

FIGURE 12. m, pressure record, as in figure 11.  -, theory (turns back, indicating a 
weak front shock not observed in the experiment). 

this table, because the profile was not steep enough to permit measurement of 
U. d,lUr does not depend on U ;  d /U  is measured directly, because the experi- 
ments have the pressure as a function of the timewise variable x /U.  In  figure 12 
another record of a C shock is presented (experiment 5, table 2). 

According to the theory, a thin front shock of small strength should appear 
because the pressure ratio pJp0 > 1 + 4ya,/(y + 1).  But here it is hard to decide 
from the figure whether or not a front shock is present (in other words, whether 
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the shock is of B or C type). In  all other cases, it is clear that, for pressure ratios 
p,/p, between y (see (5.15)) and 1 +4ya,/(y+ I ) ,  only B shocks are found 
experimentally. We consider this substantial support for our theory (which is 
based on relaxation connected with relative motion). 

7. Discussion 
The theory predicts effects of relaxation on the speed of propagation and on 

the form of the pressure profile. The experiments do not allow one to measure 
the influence on the former, but demonstrate the existence of definite effects on 
the latter. This involves, in the case of B shocks, a front shock with pressure 
ratio p*/po. The theoretical value for p* is obtained from matching a dispersion- 
dominated with a relaxation-dominated shock. p* is in the transition region 
between these. This region is ignored in our theory, which therefore provides only 
an approximate value forp*. In  view of this and of what is said about thermal re- 
laxation in § 6 ,  we may say that qualitatively the experiments support the part 
of the theory about p*. 

In  5 6 we found a smaller relaxation time for B and Cshocks than was predicted. 
Actually, the mean value of K in figure 10 implies a relaxation time of about one 
half the theoretical value @/18v. Calculating x*, we decided that, for the rela- 
tively low x* in the experiments, the value of 7 for spherical bubbles is applicable. 
There are several reasons for scatter in the experimental values for K in figure 10. 
Experimental errors are involved in the measurement of R, (about 20%), in 
determining the values of d, and d, from the oscilloscope recordings (about 10 %). 
Systematic differences between theory and experiment may be explained by a 
number of effects we left out of the theory. 

(i) Finite Reynolds number. In  determining the resistance of the bubbles, 
no correction is made for this. For steady flow such a correction was calculated by 
Moore (1965); but it is illegitimate to apply it to unsteady flow. 

(ii) Deformation asymmetrical with respect to fore and aft, symmetrical with re- 
spect to the direction of relative vebcity. If the potential for the relative motion is $, 
then this deformation stems from the p @/at in Bernoulli's equation for the pres- 
sure. The symmetrical term &pIVq512 leads to the oblate-ellipsoidal form, which is 
accounted for. The magnitude of the former term relative to the latter is 

R{a/at (V - .)}I(. - u)'. 

In  the relaxation zones, B and C shocks, a/at N 7-l, and using (2.27), the above 
ratio is seen to be of order Re-I  and therefore small. In  A shoclis, on the other 
hand, where a/at is of order U/d,, this ratio is often comparable with unity. We 
have not made an attempt to estimate the effect of (i) and (ii). If this proved 
possible, i t  would require much more theoretical work. Here we merely remark 
that, alone or in combination, they could cause a systematic difference between 
the observed and calculated relaxation time. 

(iii) InJluence of gravity. First, this gives rise to buoyancy and a non-zero 
velocity of the bubbles prior to the passage of a pressure wave. In  magnitude this 
velocity is of order 0.2ms-l; and therefore in many of our experiments it is 
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comparable with the shock-induced velocity, though of opposite sign. For the 
weak shocks we are dealing with, the relative velocity due to buoyancy is con- 
stant during the passage of the shock, and does not for that reason affect its 
structure. Another question is whether the hydrostatic pressure distribution 
that exists in the undisturbed mixture might affect the structure of the shock in a 
significant way. Fortunately, this turns out not to be the case. As might be 
expected, the hydrostatic pressure distribution found by our experiments modi- 
fies the propagation velocity. But for comparison of theory with experiments, 
to a sufficient level of accuracy the local values for p, and Po can be used, and 
no correction for gravity on the structure needs to be carried through. For, for 
present purposes, we may disregard the effects of dispersion, attenuation and 
relative translational motion of the bubbles. We consider a pressure disturbance 1, 
propagating in an undisturbed region with a hydrostatic pressure distribution. 
The disturbance is defined as the difference between the local and the undisturbed 
pressure : 1, = p -po where - p/po < 1. 

With this we find from the continuity and momentum equations that the dis- 
turbance obeys - -  

- + c  81, -+c,--+- all P a p  P f Y c o F = 0  
at Oax p0ax 2p0 

(see the appendix). 
In  the experiments, a pressure profile was measured a t  a particular location 

along the shock tube as a function of time. The theory of 94, with the results of 
which the measurements are compared, deals with travelling waves described 
in terms of a moving co-ordinate x' = x + Ut. The shock velocity U is expressed 
in local quantitiesp, and c,. The error introduced by neglecting gravity can there- 
fore be estimated by calculation of the effect of gravity over the width Ur of 
the shock. The effect of gravity appears in the first place through the dependence 
of co on x, since (7.2) 

where coo and poo are constant reference values. Further gravity gives rise to the 
last term on the left-hand side of (7.1). The nonlinear term col,/po a1,/ax steepens 
the wave and leads, as was discussed before, combined with a diffusion term on 
the right-hand side of (7 .  l ) ,  to a constant profile, in the absence of gravity. 

The role of the nonlinear term being understood, we may estimate the effect 
of gravity by considering a linear wave. Consider first 

a23 
at OOax 213, 

a F  P f V O  1, = 0. - + c  -+- (7.3) 

The relevant solution is a wave travelling with speed coo and attenuated by the 
factor exp{ - (pfgx)/(2poo)}. The maximum wave thickness occurring in region C 
is of order U7. Numerically this is of the order of 1 m. For poo = 105Nm-2 and 
Ur = 1 m, the exponential is 0.95. Neglecting this attenuation therefore intro- 
duces a relative error of about 5 %, which, in view of the experimental accuracy, 
is negligible. Next we consider the effect of the depencence of co on x: 
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This indicates a stretching of the wave. Two wavelets at distance V a t  t = 0 are 
at  a distance V ( l  +pfgc,t/po) at t. The longest time, again in region C ,  necessary 
for a wave to pass an observer is the relaxation time T .  The quantity pfgc,r/po 
ranges from 0.05 to 0.10 at most. From these estimates, we conclude that compari- 
son of our experimental data with the theory of $4 justifies our conclusions. 

8. Conclusion 
This paper was inspired by observing a gradual change in the profile of a shock 

wave passing through a bubbly liquid. A theory was developed which takes into 
account the motion of the bubbles relative to the liquid. The theory predicts 
effects on both wave speed and wave profile: the effect on speed is so small that it  
was not possible to measure it; the effects on the profile could be measured. The 
experiments gave fair support for stating that the changes in profile are caused 
by the relaxation mechanism associated with (initially generated and eventually 
resisted) motion of the bubbles relative to the liquid. 

Some remarks can be made about future work. It seems advisable to use smaller 
bubbles than the ones produced in our experiments. This leads to smaller Weber 
numbers, and less deviation from the spherical shape. Also, the effect of § 7 (ii) 
becomes less important. Another improvement might, be to use gases with smaller 
heat diffusivity than air. This would avoid thermal relaxation, and enable one 
to obtain more accurate data for p* .  

This paper is based on part of a Ph.D. thesis by L. Noordzij a t  the Twente 
Institute of Technology, The Netherlands, 1973. 

Appendix 

by gravity, we transform the basic equations by introducing 
To find out in what way a disturbance propagating in one direction is distorted 

(A 1) 1 p = po( 1 +€PI) for cpopl = p ,  
p = po(l + $ I )  for $,p' = p ,  
u = €COpOU1, x = xlcor, t = tlr. 

p ,  and Po are given functions of x. From (2.4) and (2.12) neglecting effects of 
relative transIationa1 motion, we have, with p g  = p ,  

p p / ( l  -p)  = const. 

From this and (2.9) i t  follows that 

= const.; 

co/po = const. or, forp, < I ,  
From (A I ) ,  it  follows that 
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With help of (A 4) this can be written as 

a 

Further, we define 

( A l ) ,  (A5) and (A6) areintroducedin (2.4)) (2.5) and (2.12)) withp =pg. Terms 
of order €2 and lower are retained, terms of order t3$ are discarded. pfgcor/po is 
small. For waves of moderate amplitude, travelling in the positive 0 direction, 
we find 

I n  the laboratory frame, (A 7) becomes 
- -  

a P  a?l 2, aP PfSCOF = 0. -+c -+co--+- 
at Oax p0ax 2p0 
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FIGURE 2 .  1)iffercnt profiles of the shock wave recorded at places A ,  B and C, indicated 
in figure 1.  

p o x  1 0 2  R, x lo3 (m) Region P h O  
A 1.08 3.68 1.27 
B 1.07 2.94 1.18 
c 1 .0(i 2.58 1.13 

NOORDZIJ A X D  VAN \VIJNCrAARUEN (E'acinq p .  144) 
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FIGURE 4. Pressure record typical in region A .  p J p ,  = 1.09; ,/I,, = 3.28 x 
R, = 1.32 x m; dA = 7 .9  x m; wavelength at back of shock A = 6.7 x m. 
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FIGURE 6. Pressure record typical in region B. 
p J p 0  = 1.42; /lo = 2 . 1 9 ~  10-2; R, = 1 . 2 8 ~  m; Fegp = 0.57; 

dn = 8.5 x 10 -2 m;  A = 5.4 x lo-* m ;  d~ = 0.357 m. 
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